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The problem is resolved for buckling of a hinged elongated rectangular plate compressed 
along the long side from the position of two new plasticity theories [i, 2]. It is assumed 
that the start of buckling is accompanied by an increase in compressive load. 

Theoretical and experimental studies devoted tothis problem show that deformation 
theory (Nadai, Ii'yushin) gives better conformity with experiments than flow theory (Reis, 
Laning) [3]. On the other hand, it is well known that deformation theory can only reasonably 
be used with proportional loading, whereas flow theory does not have such limitiations. 

In the process of loss of stability for a plate there is complex loading with rotation 
of the principal stress axes. Each element of a material initially loaded proportionally at 
the instant of buckling is additionally loaded with application of all stress components 
under conditions of a plane stressed state. Recently this class of complex loads has been 
studied by experiment [4-6], and it has been established that neither deformation theory nor 
flow theory are suitable for quantitative description of these tests. 

Illustrated below is the possibility of using the theories in [i, 2] for different 
directional complex additional loading from a stressed state. A comparison is provided with 
test data in [6]. The good agreement obtained of calculation and experiment makes it pos- 
sible to use it as a better basis for solving stability probelms [i, 2] than deformation and 
flow theories. Results of calculations for the stability of a plate are compared with tests 
in [3, 7]. 

i. The most complete experiments presented in the literature are those in which dif- 
ferent complex additional loading is accomplished from a state of uniaxial tension [4-6]. 
We return to analyze them with the aim of determining material characteristics used in the 
theories in [i, 2]. 

As a rule experiments for complex loading with rotation of the principal stress axes are 
performed on thin-walled tubes with application of an axial force and a torsional moment. 
Let axis x be directed along the generating line, and axis y have a tangential direction. 
Stress components differing from zero are designated o x and Xxy. Arbitrary additional load- 
ing may be characterized by the parameter m = Aox/A~xy. 

From the position of the theories in [i, 2] we consider for a plastically incompressible 
material different additional loading from a stressed state by means of applying Aox, ATxy. 
On the basis of [I] with tension we have 

Aex =- [1 -1- sin 
k 2G o 

' - - - - - - ~  + t ) A a ~ ,  Aey = Ae~ - -  Aex i -- 2v 

(E is Young's modulus, v is Poisson's ration, ~ is internal friction angle). From the tan- 
gential modulus known from a test E t = AajAex it is possible to determine the plastic 
strengthening modulus G o 

G o l ~ sin qo ~ E t 

(G o and ~ with uniaxial loading are functions of o x [i]). 

The region of active additional loading when positive plastic displacements are realized 
through the whole slip plane is determined by the conditions Aox>0 , --(I ~ sin 9)/(2 sin 2~)~ 
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TABLE 1 

Specimen 
number 

A-I 
A-2 
A-3 
A-4 
A-5 
B-I 
C-I 
C-2 
D-t 
D-2 

'lrt 

--0,28 
--0,40 
--0,29 
--0,32 
--0,40 
--2,0 
--0,06 
--0,025 

t,2 
l , i  

G i . t 0  -2 MPa 

experiment 

t20 
117 
tt3 
t16 
127 
232 
t13 
95 
84 
77 

theory in [i] 

t t l  
t20 
t12 
t t4 
t20 
237 
98 
96 
59 
60 

theory in [2] 

t14 
125 
tt5 
t18 
125 
237 
98 
96 
6t 
62 

m -1<<.(1 + sin ~)/(2 sin 2r . I n  t h i s  c a s e  

aex t + sin r + "E') Aft:c, Ayxv ~'---~o "q- ~ ATxv = 2G ~ ~ , 

(B i s  e l a s t i c  s h e a r  m o d u l u s ,  AYxy i s  s h e a r  s t r a i n  i n c r e m e n t ) .  

I f  A 'Gv>O,O~m~2s in2~ / ( i  + s i n ~ )  , t h e n  one  o f  t h e  s l i p  p l a n e s  i s  u n l o a d e d  and  t h e  
f o l l o w i n g  r e l a t i o n s h i p s  a r e  v a l i d  

Ae~ = (3 (t + sin q~) . sin 2r At  
86 o +-~--)  Ao~ + 4-'$~o xv, 

Ayxy lq"  sin rP tg rPA~:C + ( sin~ r - ~ )  
= 4a ~ ~, Go + A t ~ .  

(1.2) 

With ATxu > 0, --2 sin 2~/(I + sin ~) ~< m ~< 0 partial unloading is realized, for which 

__-- [.1 q- sin cp I ) sin 2q~ 
A~:c ~ 8 G + T  Ao~+ 4--K~ ~ At~u, 

Ayxy = t + sin q~4Go tgcP&rrx@[sin2cP+-~)k--~o AT:cy. 
(1.3) 

If with additional loading from tension A~x<0,--(i +sin~)/(2sin29) ~m-1~(l +sin~)/(2sin2~), 

then there is unloading throughout the whole slip system and in this region the material 
deforms elastically. 

As can be seen from (I.i)-(1.3), strains Ae x, A?xy change continuously in relation to 

the additional loading direction m. 

We turn to the results of experiments for complex loading. Good conformity of calcu- 
lated dependences for a model [i] with test data for St. 20 [4] is obtained with ~ = 0.12. 
With an increase in the stress level angle ~ increased [5]: ~ = 0 . 1 5 2 - 0 . 4 1  (for brass), 0.18 
(for duralumin), 0.3 (for copper). 

In tests [6] on thin-walled tubular specimens made of aluminum alloy 24S-T4 a study was 
made of the dependence of initial modulus Gi = Axxv/AY:cu on additional loading direction m. 
We shall have good conformity of theoretical and experimental results if we assume that G O = 
3940 MPa, ~ = z/6. 

Proceeding from the theory in [I], modulus G O may also be determined by E k in compres- 
sion known from a test: 
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With a plane stressed state in direction~z a z =T~z =~uz = O. In this case relation- 
ships [i] for the region of active additional loading from a compressed state in direction 
x take the form 

{t -- sin rp /i -~ sin (p = ~~-I < ~ ) ~ '  

+ (, + § 
4G o 

/2 sin2 (P -~-) 

( 1 . 5 )  

Fundamental relationships of the theory in [2] for tension and compression are identical 
and they conform with Reis-Laning flow theory based on an isotropically expanding Mises sur- 
face: 

A s ~ =  I ~ - 5 - '  h e y = A e ~ - -  Aex , t - -  2 v  , 

2 -Y--TE --aaz" (i.6) 

As can be seen from (1.6), from the tangential modulus E t known from a test it is possible to 
find strengthening modulus ~t: 

E / G  t =  3 E / E t - - t  ~ - 2 v .  

In solving the problem for buckling of a rectangular plate beyond the elastic limit we 
use equations of the theory in [2] applied to a plane stressed state in direction z. In this 
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case for the region of active additional loading from a uniaxial compressed state in dir- 
ection x definitive relationships take the form 

( ~ - ~  . I ~ /26 + i - 2 8 / 3  (1.7) 

(G k and 6 are functions of tangential stress intensity determined on the basis of test data). 
In [2] different complex additional loadings from a uniaxial tensile state with application 
of AOx, A~xy are considered in detail. 

We analyze the data of experiments in [4-6] from the position of plasticity theory [2]. 
There is better conformity of calculated dependences as a result of experiments on St. 20 
[4] with 6 = 0.026. As far as experiments in [5] are concerned, the entirely satisfactory 
conformity of calculation and experiment is only obtained for the first group of tests (addi- 
tional loading by torsion). It has been established [2] that with an increase in o x values 
of 6 increase: for brass 6 = 0.1-0.47, for duralumin it is 0.15-0.45. As follows from the 
theory in [2], additional loading with tension from a torsional state should not cause a 
change in plastic deformation, but this is not confirmed in tests in [5]. 

Now we turn to the results of experiments in [6]. ' There is better conformity of 
theoretical and test data with G t = 1640 MPa, 6 = 0.33. Presented in Table 1 are test data 
for the initial additional loading modulus G i as a result of calculations by the theory in 
[i] and that in [2]. Test data (circles) and calculated curves T~(Txv), Ae~(Txv) by the 
theories in [i] (solid line) and in [2] (broken line) are provided in Figs. 1-3 for sections 
of complex loading. Also shown there are programs for loadings Ox(~xy). 

2. We apply the definitive relationships for the theories considered above in solving 
the problemof buckling of hinged elongated rectangular plate compressed along the long side. 

The first studies for buckling of plates and shells on the basis of deformation plastic- 
ity theory and a classical ideal about the loss of stability with unchanged external forces 
belong to ll'yushin [8] et al. In this approach buckling is accompanied by appearance of 
areas of unloading which markedly complicate the analysis. In using flow theory and the 
same criteria some of the difficulties are retained. 

These problems are resolved much more simply if in proceeding from some plasticity 
theory the lower critical load is found corresponding to buckling with continuous loading 
(Shenley, 1946-1947). In [3] we find similar references to test data for stability of plates 
beyond the elastic limit and in works in which analysis of stability is performed using 
this criterion from the position of deformation theory and flow theory. 

We proceed to solving the problem of buckling of a rectangular plate from the position 
of the theories in [I, 2] using the criterion of continuous loading. 

A plate of constant thickness h (Fig. 4) with sides a and b (a >> b) before the instant 
of buckling is in a uniform stressed state ox ~--~, ~v = Txv = O. 

We write fundamental relationships for the region of active additional loading from 
the condition of uniaxial compression in a general form 

Ao~ = E(anAax + al2Aev), 

A(I v = E(a21Asx + a22Aev), A'rxy ---- Ea33A?.~v. 
( 2 . 1 )  

According to the Kirchhoff plate bending theory for buckling strain increments - linear 
functions of the distance from the central surface. 

As~=As~--zO~w/Ox 2, 
Ae~=As~--zO2w/ay ~, A~v=Av~y--2zOhv/(OxaY) ,  

( 2 . 2 ) ,  

where Ae~, Aeg, A?~y are infinitely small strain increments for the central surface; w = 

w(x, y) is plate deflection with buckling. 
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Apparently stress increments also change linearly through the plate thickness. Now 
by using (2.1) and (2.2) it is easy to calculate increments for bending AM~, A~Iu and tor- 

sional hMxy ~oments: 

AMx = 

h/2 

.[ Ao.~zdz-  
--h/2 

Eh 3 [ OZw 02w ) 
, 

hi2 

A M .  J" A%zdz-- Eh~ { ~ ~ = t2 k a2'~ + a22 Og ~')' 
--h[2 

h/2 
Eh 3 02 w 

AM~v = AT':v zdz = - -  --6- a~3 0xO-----u" 
--ht~ 

( 2 . 3 )  

By projecting on the z axis forces operating on an element of the plate in a curved state, 
we obtain the well-known equilibrium equation [3] 

02AMx 0 2 A M x y  02AMy Oew ( 2 �9 4 ) 
~ ~ " ~ 2 0x O-----f- + or2 + ~ h  ox 2- = 0. 

By substituting (2.3) in (2.4) we find with o x = -o a differential equation for plate buckl- 
ing 

O~tv O~zv 12a 02w 
O~tu' + (a12 + a21 -~  @33) OZ@------~ + a.,., all Ox---s __ Oy4 E h  2 0 x  2 - o .  (2.5) 

For a plate hinged along the long edges we have the following boundary conditions with 

y = 0, b: u' = 0, 02w/0y ~ = 0. We take a solution which satisfies these conditions in the form 

w = A s i n  mnz s i n  ,Tag 
a b " ( 2 . 6 )  

By substituting this expression for deflection in (2.5) and defining ~. = a~/(bm) 2, we find 
the condition for existence of a nontrivial solution in the form of (2.6) 

o - - =  ( a . _  + 
t2b2 L )2 

Ct21 -~- @33) n~ + a22n4%~] �9 

It is easy to see that in order to find the least value of a = o, it is necessary to set 

n = I, ~ = a11/a22 , then 

o ,  - -  t2b2 ( 2 . 7 )  

Thus, (2.7) determines the least compressive load with which there is buckling of an 
elongated hinged rectangular plate compressed along the long side. 

For an elastic material coefficients in relationship (2.1) take the form 

1 v 1 
' a n  = a22 - -  a~2 : a2~ - -  a3a - -  2 ( t  ~ v )  l - - v  2' t - - v  2' , " ( 2 . 8 )  
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By substituting (2.8) in (2.7) we find for an elastic region 

E~ 2 / h \2 

This equation is only valid in the case when the critical stress is within the elastic limits. 
By proceeding from relationship (1.5) we find coefficients in (2.1) for the plastic region 
of active loading 

a n k 4--- - -~-~o �9 -~  t , a12 = Zt~O 

( t  - -  sin (p E-;v,')/D ~ / t - -  sinq~ ) /  
a~l = 4Go ' a'~2 k 2Go E "+ i D, 

a3~ 1 ~ 2 s in  2 (pE/G o -b 2 (1 -t- v) ,  

D = c~ (P ( ~ o ) = 1 6  + 3 - -  2v - -  sin (P E "-~ I - -  v e ' 4 G  o 

( 2 . 9 )  

By substituting (2.9) in (2.7) we derive the dependence of ~, on b/h for the theory in [I]. 

If now we resolve the relative increment of stresses of relationship (1.7) in the form 
of (2.1), then we obtain 

i -~ 2 (5 -- v) Gt/E I @ (1 -- 2,;) Gt/E 
a l l  ~ D ' a22 = ~ D ' 

1 - -  2 (1 - -  2v) Gt/E 
a 1 2 - - a 2 1 ~ 2  D 

Ct,;~ 
aS3 ~ 2~ ( t  - -  Gtl~)/3 @ Gt/~ ' 

D = 5 -- 4v 4-  (I -- 2";) Gt/~. 

(2.1o) 

We compare calculated dependences o, (b/h) with the results of experiments in [7]. In 
[3] on the basis of test data for duralumin plates with elastically clamped edges [7] the 
dependence o,(b/h) is converted to the case of hinged edges. Results of these tests are 
shown in Fig. 5 by circles. The calculated dependence a.=o.(b/h) according to the theory 

in [I] is applied by a solid line. In the calculations E = 75,000 MPa, ~ = 0.3. In (2.9) 
with a, < 340 MPa angle ~ = 0, then with o, = 340 MPa �9 = 0.052(3~ with o, = 356 MPa 

= 0.i05(6~ and with o, = 364 MPa �9 = 0.156(9~ The metal used in the tests is similar 

to duralumin DI6T, and therefore the plastic strengthening modulus G o was determined from 
(1.4) and the results of compression experiments on specimens of DI6T [3]. 

In plotting calculated dependences from the theory in [2] the strengthening modulus 
G k was found from the tangential modulus E k known from uniaxial compression tests [3]. If 
in (2.10) we take 6 = 0 and we substitute it in (2.7), then we obtain a calculation relation- 

6,, Ml~a 

1 

2 0 0 1  , ,. 

15 2 0  25  5 0  .35 b / h  

Fig. 5 

7 6 8  



ship ~, = o,(b~) for flow theory with an isotropically expanding Mises surface which is 
shown in Fig. 5 by a broken-dotted line. The best conformity with the experiments may be 
given as a result of an increase in 6. It follows from analyzing test data in [5] that 
for duralumin DI6T the maximum value of ~ = 0.5. The calculation relationshipio. = ~.(b/h), 
calculated from the theory in [2] with ~ = 0.5 is given by a broken line in Fig. 5. 

On the basis of the comparison provided it is possible to conclude that in solving 
the problem considered above for stability of a plate preference should be given to the 
theory in [i]. 
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